Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.520
Filtrar
1.
J Agric Food Chem ; 72(18): 10521-10530, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656141

RESUMEN

2-Acetyl-1-pyrroline (2-AP) is a key volatile organic compound in fragrant rice aroma. However, the effects of temperature on 2-AP biosynthesis in fragrant rice and its regulation mechanism have been rarely reported. In the present study, three fragrant rice varieties were used as plant materials, and four temperature treatments during the grain-filling stage, i.e., (T1) 22/17 °C, (T2) 27/22 °C, (T3) 32/27 °C, and (T4) 37/32 °C, were adopted. The results showed that grain contents of 2-AP, proline, and γ-aminobutyric acid (GABA) significantly (P < 0.05) increased with decreased temperature, while the lowest and highest 2-AP contents were recorded in the T4 and T1 treatments, respectively. Higher pyrroline-5-carboxylic acid (P5C) content was recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). The transcript levels of genes BADH2, PRODH, and OAT significantly (P < 0.05) decreased with decreased temperature. Lower transcript levels of genes P5CR, P5CS2, DAO2, DAO4, and DAO5 were recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). In conclusion, low temperature increased 2-AP content and high temperature decreased 2-AP content in fragrant rice. We deduced that temperature regulated 2-AP biosynthesis through the metabolism of proline and GABA.


Asunto(s)
Oryza , Proteínas de Plantas , Pirroles , Semillas , Temperatura , Oryza/metabolismo , Oryza/química , Oryza/crecimiento & desarrollo , Oryza/genética , Pirroles/metabolismo , Pirroles/análisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Prolina/metabolismo , Prolina/análisis , Regulación de la Expresión Génica de las Plantas , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
2.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598410

RESUMEN

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Histidina Quinasa , Hidantoínas , Pirroles , Botrytis/genética , Botrytis/efectos de los fármacos , Botrytis/enzimología , Dioxoles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacología , Pirroles/farmacología , Pirroles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Enfermedades de las Plantas/microbiología , Simulación del Acoplamiento Molecular , Mutación , Mutagénesis Sitio-Dirigida
3.
Int J Food Microbiol ; 413: 110600, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38281435

RESUMEN

2-Acetyl-1-pyrroline (2AP) is an important and major flavor aroma compound responsible for the fragrance of basmati rice, cheese, wine, and several other food products. Biosynthesis of 2AP in aromatic rice and a few other plant species is associated with a recessive Betaine aldehyde dehydrogenase 2 (BADH2) gene. However, the literature is scant on the relationship between the functional BADH2 gene and 2AP biosynthesis in prokaryotic systems. Therefore, in the present study, we aimed to explore the functionality of the BADH2 gene for 2AP biosynthesis in 2AP synthesizing rice rhizobacterial isolate Bacillus cereus DB25 isolated from the rhizosphere of basmati rice (Oryza sativa L.). Full-length BcBADH2 sequence was obtained through whole genome sequencing (WGS) and further confirmed through traditional PCR and Sanger sequencing. Then the functionality of the BcBADH2 gene was evaluated in-silico through bioinformatics analysis and protein docking studies and further experimentally validated through enzyme assay. The sequencing and bioinformatics analysis results revealed a full-length 1485 bp BcBADH2 coding sequence without any deletion or premature stop codons. Full-length BcBADH2 was found to encode a fully functional protein of 54.08 kDa with pI of 5.22 and showed the presence of the conserved amino acids responsible for enzyme activity. The docking studies confirmed a good affinity between the protein and its substrate whereas the presence of BcBADH2 enzyme activity confirmed the functionality of BADH2 enzyme in B. cereus DB25. In conclusion, the findings of the present study suggest that B. cereus DB25 is able to synthesize 2AP despite a functional BADH2 gene and there may be a different molecular mechanism responsible for 2AP biosynthesis in bacterial systems, unlike that found in aromatic rice and other eukaryotic plant species.


Asunto(s)
Bacillus cereus , Oryza , Bacillus cereus/genética , Bacillus cereus/metabolismo , Secuencia de Bases , Odorantes/análisis , Proteínas de Plantas/metabolismo , Pirroles/metabolismo
4.
Ophthalmic Surg Lasers Imaging Retina ; 55(2): 109-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198607

RESUMEN

Futibatinib is an irreversible inhibitor of fibroblast growth factor receptors and is currently the subject of phase II clinical trials for the treatment of metastatic carcinomas. We report a case of a 59-year-old woman with metastatic malignant breast cancer who developed acute symptomatic subretinal fluid (SRF) accumulation after two weeks of futibatinib therapy. The SRF resolved within two weeks after futibatinib cessation. The medication was subsequently restarted at a lower dose, and SRF recurred within two weeks. To our knowledge, this is the first case depicting rapidly reversible SRF accumulation with the use of futibatinib in a real-world clinical setting. [Ophthalmic Surg Lasers Imaging Retina 2024;55:109-111.].


Asunto(s)
Neoplasias de la Mama , Pirazoles , Pirimidinas , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Líquido Subretiniano/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Pirroles/metabolismo
5.
Pharmacol Ther ; 253: 108565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052308

RESUMEN

Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.


Asunto(s)
Glioblastoma , Microglía , Humanos , Aminopiridinas/farmacología , Pirroles/metabolismo , Pirroles/farmacología , Microambiente Tumoral
6.
J Sci Food Agric ; 104(2): 1178-1189, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37743545

RESUMEN

BACKGROUND: Riboflavin, a vital water-soluble vitamin with antioxidative activity, plays a critical role in maintaining overall bodily health and defense responses. However, its impact on fragrant rice yield and aroma remains unexplored. RESULTS: In a 2022 pot experiment with Meixiangzhan and Yuxiangyouzhan fragrant rice cultivars, we applied riboflavin foliar treatments at concentrations of 0 (CK), 10 (R10), 20 (R20), and 40 (R40) mg L-1 during the initial heading stage. Riboflavin increased rice yield, 2-acetyl-1-pyrroline (2-AP) content, and antioxidative properties. It boosted 2-AP level by 13.1-50.1% for Meixiangzhan and 22.3-35.3% for Yuxiangyouzhan, with the highest levels in R20 and R10 treatments. This increase is significantly correlated with elevated levels of proline, pyrroline-5-carboxylic acid, pyrroline, and methylglyoxal, as well as heightened enzyme activities, including those of proline dehydrogenase, ornithine aminotransferase, and pyrroline-5-carboxylic acid synthetase (P5CS). The R20 treatment resulted in the highest yield due to an improved seed-setting rate. Importantly, a positive correlation emerged between 2-AP content and yield, both significantly linked to superoxide dismutase, proline, hydrogen peroxide, P5CS, catalase, and pyrroline. CONCLUSION: Riboflavin maintained enzyme activities, regulated substance synthesis pathways, and increased 2-AP and yield, especially in the R20 treatment. These insights advance fragrant rice production theory by uncovering riboflavin's role in the development of fragrant rice. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Oryza , Antioxidantes/farmacología , Antioxidantes/metabolismo , Oryza/química , Odorantes/análisis , Grano Comestible/metabolismo , Pirroles/farmacología , Pirroles/metabolismo , Riboflavina , Prolina/metabolismo , Ácidos Carboxílicos/metabolismo
7.
Bioorg Med Chem Lett ; 92: 129408, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429500

RESUMEN

A series of thalidomide analogues, where the fused benzene ring in the phthalimide moiety was converted into two separated diphenyl rings in maleimide moiety and N-aminoglutarimide moiety was replaced by substituted phenyl moiety, were synthesized and evaluated for their NO inhibitory activities on BV2 cells stimulated with lipopolysaccharide (LPS). Among the synthesized compounds, the dimethylaminophenyl analogue 1s (IC50 = 7.1 µM) showed significantly higher inhibitory activity than the glutarimide analogue 1a (IC50 > 50 µM) and suppressed NO production dose-dependently without cytotoxicity. In addition, 1s inhibited the production of pro-inflammatory cytokines and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by blocking nuclear factor-kappa B (NF-κB) and p38 MAPK pathways. These results demonstrated that 1s showed good anti-inflammatory activity and could become a leading compound for the treatment of neuroinflammatory diseases.


Asunto(s)
Lipopolisacáridos , Pirroles , Lipopolisacáridos/farmacología , Pirroles/metabolismo , Antiinflamatorios , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Microglía/metabolismo , Ciclooxigenasa 2/metabolismo
8.
Clin Res Hepatol Gastroenterol ; 47(7): 102174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380128

RESUMEN

AIM: This systematic review and meta-analysis was conducted to evaluate the efficacy and safety of 4 mg saroglitazar treatment in patients with non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH). METHODS: PubMed, Embase, Scopus, Cochrane CENTRAL, medRxiv (pre-print), bioRxiv (pre-print), and ClinicalTrials.gov databases were searched for relevant studies. The primary outcome was the change in the serum alanine transaminase (ALT) level. The secondary outcomes were changes in liver stiffness, liver function test parameters, and metabolic parameters. Pooled mean differences were calculated using random-effects models. RESULTS: Of 331 studies that were screened, ten were included. Treatment with adjunct saroglitazar showed a reduction in ALT [mean difference: 26.01 U/L (95% CI: 10.67 to 41.35); p = 0.009; i2: 98%; moderate GRADE evidence] and aspartate transaminase [mean difference: 19.68 U/L (95% CI: 8.93 to 30.43); p<0.001; i2: 97%; moderate GRADE evidence] levels. There was a significant improvement in liver stiffness [mean difference: 2.22 kPa (95% CI: 0.80 to 3.63); p = 0.002; i2: 99%; moderate GRADE evidence]. There were significant improvements in glycated hemoglobin [mean difference: 0.59% (95% CI: 0.32 to 0.86); p<0.001; i2: 78%; moderate GRADE evidence], total cholesterol [mean difference: 19.20 (95% CI: 1.54 to 36.87); p = 0.03; i2: 95%; moderate GRADE evidence], and triglyceride [mean difference: 105.49 mg/dL (95% CI: 11.18 to 199.80); p = 0.03; i2: 100%; moderate GRADE evidence] levels. Saroglitazar treatment was safe. CONCLUSION: Treatment with adjunct 4 mg saroglitazar could significantly improve liver enzymes, reduce liver stiffness, and improve metabolic parameters (serum glucose and lipid profile) in patients with NAFLD or NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fenilpropionatos , Humanos , Pirroles/uso terapéutico , Pirroles/metabolismo , Pirroles/farmacología , Fenilpropionatos/uso terapéutico , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacología , Pruebas de Función Hepática , Alanina Transaminasa , Hígado/metabolismo
9.
Toxicol Lett ; 373: 152-159, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36464202

RESUMEN

Retrosine (RTS) is a pyrrolozidine alkaloid and a known hepatotoxin that widely exist in nature. The mechanisms involved in toxic action of pyrrolizidine alkaloids need further investigation. The objective of the present study was to evaluate the correlation of RTS hepatotoxicity with hepatic RTS concentration and pyrrole-protein adduction. Mice were intragastrically treated with RTS alone or RTS and ketoconazole (KTZ) simultaneously. Sera and liver tissues were collected at various time points after administration, followed by the determination of changes in serum transaminase activity, hepatic RTS concentration and pyrrole-protein adduction. The correlation of RTS hepatotoxicity with hepatic RTS concentration and hepatic pyrrole-protein adduction were examined by use of Sigmoid-Emax PK/PD models. Dose-dependent hepatotoxicity, hepatic RTS concentration and pyrrole-protein adduction were observed in the animals, which could be modulated by co-treatment with KTZ. The fit parameters indicated pyrrole-protein adduction was more closely related with liver injury than hepatic RTS concentration. Similar correlation was observed in mice given low-dose of RTS for 4 consecutive days. RTS hepatotoxicity is correlated with hepatic pyrrole-protein adduction derived from RTS rather than hepatic RTS concentration. The observed protein modification would be a good indicator to predict the hepatoxicity of RTS at low dose.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Alcaloides de Pirrolicidina , Ratones , Animales , Pirroles/toxicidad , Pirroles/metabolismo , Alcaloides de Pirrolicidina/toxicidad , Hígado/metabolismo , Proteínas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498856

RESUMEN

Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the 'Zhexian No. 8' (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors' analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding.


Asunto(s)
Glycine max , Oryza , Glycine max/metabolismo , Verduras/metabolismo , Fitomejoramiento , Pirroles/metabolismo , Odorantes/análisis , Aminoácidos/metabolismo , Oryza/genética
11.
J Diabetes ; 14(10): 646-657, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36195541

RESUMEN

INTRODUCTION: Diabetic neuropathy is the most prevalent complication of diabetes mellitus. Although the precise etiology of this neurological disorder has yet to be defined, elevated blood glucose promotes anerobic glycolysis; this produces excess advanced glycation end-products, many of which have a pyrrole structure. Here, we test the hypothesis that protein pyrrole adducts are associated with elevated glucose indices and some clinical features of diabetic diffuse neuropathies. METHOD: We investigated the levels of plasma pyrrole adducts and adjusted urinary pyrrole adducts in a group of elderly persons (n = 516, age 60-79) residing in the District of Luohu, Shenzhen, China between 2017 and 2018. Symptoms of distal symmetric polyneuropathy (DSPN) and resting heart rate, a measure of autonomic nervous system function, were collected from participants (n = 258) with elevated glucose indices. RESULT: Protein pyrrole adducts showed a strong correlation with glucose indices before and after adjustment for age and estimated glomerular filtration rates. Stratified analysis showed that the medians and interquartile values of pyrrole adducts grew as glucose indices of the subgroups increased. Participants with symptoms of DSPN and sinus tachycardia presented elevated levels of plasma pyrrole adducts. CONCLUSION: This study provides a novel link between glucose indices and the etiology of diabetic diffuse neuropathies.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Anciano , Glucemia , China , Neuropatías Diabéticas/diagnóstico , Neuropatías Diabéticas/etiología , Glucosa , Humanos , Persona de Mediana Edad , Pirroles/química , Pirroles/metabolismo
12.
Angew Chem Int Ed Engl ; 61(43): e202205541, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36062554

RESUMEN

Metabolic oxidation of pyrrolizidine alkaloids (PAs) from herbal and dietary supplements by cytochrome P450 produces dehydro-PAs (DHPs), which leads to toxicities. A highly reactive cation species generated from the active pyrrole ring of DHPs readily reacts with various cellular components, causing hepatotoxicity and cytotoxicity. Inspired by PA-induced hepatic damage, we developed a therapeutic approach based on a cyclization precursor that can be transformed into a synthetic DHP under physiological conditions through gold-catalyzed 5-endo-dig cyclization using a gold-based artificial metalloenzyme (ArM) instead of through metabolic oxidation by cytochrome P450. In cell-based assays, the synthesis of the DHP by a cancer-targeting glycosylated gold-based ArM substantially suppressed cell growth of the targeted cancer cells without causing cytotoxicity to untargeted cells, highlighting the potential of the strategy to be used therapeutically in vivo.


Asunto(s)
Metaloproteínas , Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/toxicidad , Sistema Enzimático del Citocromo P-450 , Pirroles/metabolismo , Oro
13.
Phytochemistry ; 203: 113357, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35970436

RESUMEN

A chemical investigation of the endophytic fungus Diaporthe destruens from the Hernandiaceae plant Illigera orbiculata C. Y. Wu collected from southern Yunnan Province, China, led to the isolation of six undescribed compounds, including two azaphilone analogs, which are a pair of epimers (13R-hydroxy-chermesinone A and 13S-hydroxy-chermesinone A); a pyrrole derivative (1-(4-(methoxymethyl)-1H-pyrrol-3-yl)ethan-1-one); an isoindolone derivative (4-hydroxy-6-methoxyisoindolin-1-one); a benzylbenzene derivative (destruensine A) and a conjectural fragment of polyketide ((2R,4R)-2-(methoxymethyl)pentane-1,4-diol) along with nine known compounds. Their structures were elucidated by spectroscopic methods and HRESIMS, and the absolute configurations were further confirmed by electronic circular dichroism (ECD) and chemical derivatization. The antimicrobial activities, anti-acetylcholinesterase activities, antiproliferation, and NO production inhibitory effects of compounds 1-15 were evaluated.


Asunto(s)
Antiinfecciosos , Hernandiaceae , Policétidos , Antiinfecciosos/metabolismo , China , Endófitos , Hernandiaceae/química , Estructura Molecular , Pentanos/metabolismo , Pirroles/metabolismo
14.
Chembiochem ; 23(18): e202200349, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35839379

RESUMEN

Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhabited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.


Asunto(s)
Hidrocarburos Clorados , Trypanosoma cruzi , Animales , Lisosomas , Mamíferos , Miosinas/metabolismo , Pirroles/metabolismo
15.
EBioMedicine ; 81: 104095, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35671622

RESUMEN

BACKGROUND: Remdesivir was the first prodrug approved to treat coronavirus disease 2019 (COVID-19) and has the potential to be used during pregnancy. However, it is not known whether remdesivir and its main metabolite, GS-441524 have the potential to cross the blood-placental barrier. We hypothesize that remdesivir and predominant metabolite GS-441524may cross the blood-placental barrier to reach the embryo tissues. METHODS: To test this hypothesis, ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) coupled with multisite microdialysis was used to monitor the levels of remdesivir and the nucleoside analogue GS-441524 in the maternal blood, fetus, placenta, and amniotic fluid of pregnant Sprague-Dawley rats. The transplacental transfer was evaluated using the pharmacokinetic parameters of AUC and mother-to-fetus transfer ratio (AUCfetus/AUCmother). FINDINGS: Our in-vivo results show that remdesivir is rapidly biotransformed into GS-441524 in the maternal blood, which then readily crossed the placenta with a mother-to-fetus transfer ratio of 0.51 ± 0.18. The Cmax and AUClast values of GS-441524 followed the order: maternal blood > amniotic fluid > fetus > placenta in rats. INTERPRETATION: While remdesivir does not directly cross into the fetus, however, its main metabolite, GS-441524 readily crosses the placenta and can reside there for at least 4 hours as shown in the pregnant Sprague-Dawley rat model. These findings suggest that careful consideration should be taken for the use of remdesivir in the treatment of COVID-19 in pregnancy. FUNDING: Ministry of Science and Technology of Taiwan.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Complicaciones Infecciosas del Embarazo , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Líquido Amniótico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Biotransformación , Femenino , Feto/metabolismo , Furanos/metabolismo , Placenta/metabolismo , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Pirroles/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
16.
Microbiol Spectr ; 10(2): e0164221, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377226

RESUMEN

Due to the emergence of multidrug-resistant strains of yeasts belonging to the Candida genus, there is an urgent need to discover antifungal agents directed at alternative molecular targets. The aim of the current study was to evaluate the capacity of three different series of synthetic compounds to inhibit the Candida glabrata enzyme denominated 3-hydroxy-methyl-glutaryl-CoA reductase and thus affect ergosterol synthesis and yeast viability. Compounds 1c (α-asarone-related) and 5b (with a pyrrolic core) were selected as the best antifungal candidates among over 20 synthetic compounds studied. Both inhibited the growth of fluconazole-resistant and fluconazole-susceptible C. glabrata strains. A yeast growth rescue experiment based on the addition of exogenous ergosterol showed that the compounds act by inhibiting the mevalonate synthesis pathway. A greater recovery of yeast growth occurred for the C. glabrata 43 fluconazole-resistant (versus fluconazole-susceptible) strain and after treatment with 1c (versus 5b). Given that the compounds decreased the concentration of ergosterol in the yeast strains, they probably target ergosterol synthesis. According to the docking analysis, the inhibitory effect of 1c and 5b could possibly be mediated by their interaction with the amino acid residues of the catalytic site of the enzyme. Since 1c displayed higher binding energy than α-asarone and 5b, it is the best candidate for further research, which should include structural modifications to increase its specificity and potency. The derivatives could then be examined with in vivo animal models using a therapeutic dose. IMPORTANCE Within the context of the COVID-19 pandemic, there is currently an epidemiological alert in health care services due to outbreaks of Candida auris, Candida glabrata, and other fungal species multiresistant to conventional antifungals. Therefore, it is important to propose alternative molecular targets, as well as new antifungals. The three series of synthetic compounds herein designed and synthesized are inhibitors of ergosterol synthesis in yeasts. Of the more than 20 compounds studied, two were selected as the best antifungal candidates. These compounds were able to inhibit the growth and synthesis of ergosterol in C. glabrata strains, whether susceptible or resistant to fluconazole. The rational design of antifungal compounds derived from clinical drugs (statins, fibrates, etc.) has many advantages. Future studies are needed to modify the structure of the two present test compounds to obtain safer and less toxic antifungals. Moreover, it is important to carry out a more in-depth mechanistic approach.


Asunto(s)
COVID-19 , Candida glabrata , Acilcoenzima A , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida glabrata/metabolismo , Farmacorresistencia Fúngica , Ergosterol/metabolismo , Ácidos Fíbricos/metabolismo , Fluconazol/metabolismo , Fluconazol/farmacología , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/metabolismo , Pruebas de Sensibilidad Microbiana , Pandemias , Pirroles/metabolismo , Pirroles/farmacología
17.
Xenobiotica ; 52(3): 219-228, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35379057

RESUMEN

1. GDC-0575 is an ATP-competitive small-molecule inhibitor of ChK1 that is being developed by Genentech for the treatment of various human malignancies.2. In a radiolabeled mass balance study of GDC-0575 in rats, two novel metabolites, named M12 (-71 Da,) and M17 (+288 Da), were detected as abundant circulating metabolites.3. Subsequent mass spectrometry and nuclear magnetic resonance analysis showed that M12 was a cyclized metabolite of GDC-0575, whereas M17 was its heterodimer to the parent. We further determined that M12 was mainly generated by cytochrome P450 (Cyp) 2d2.4. We proposed the potential mechanism was initiated by the oxidation on the pyrrole ring and subsequent cyclisation of the free primary amine onto C-3 of the pyrrole ring. This was followed by expulsion of cyclopropylcarboxamide and a loss of water to form intermediate I, which can be further oxidised to form M12, or dimerise with another molecule of GDC-0575 as nucleophile to form M17.5. To verify this hypothesis, we attempted to trap the intermediate I with glutathione (GSH) trapping assay and the GSH conjugate on the pyrrole ring was identified. This suggests the oxidation on the pyrrole led to reactive metabolite formation and supported this proposed mechanism.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión/metabolismo , Microsomas Hepáticos/metabolismo , Piperidinas , Piridinas/metabolismo , Pirroles/metabolismo , Ratas
18.
Biochemistry ; 61(3): 206-215, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35072459

RESUMEN

Thiotemplated pyrrole is a prevailing intermediate in the synthesis of numerous natural products in which the pyrrole is tethered to a carrier protein (CP). Biosynthesis of the pyrrole requires oxidation of an l-proline side chain. Herein, we investigate the biocatalytic mechanism of proline-to-pyrrole synthesis by molecular dynamics simulations, quantum mechanics/molecular mechanics simulations, and electronic structure calculations using the recently reported (Thapa, H. R., et al. Biochemistry 2019, 58, 918) structure of a type II nonribosomal protein synthetase (NRPS) Bmp3-Bmp1 (Oxidase-CP) complex. The substrate (l-proline) is attached to the Bmp1(CP), and the catalytic site is located inside the flavin-dependent oxidase (Bmp3). We show that the FAD isoalloxazine ring is stabilized in the catalytic site of Bmp3 by strong hydrogen bonding with Asn123, Ile125, Ser126, and Thr158. After the initial deprotonation followed by an enamine-imine tautomerization, oxidation of the C2-C3 or C2-N1 bond, through a hydride transfer (from either C3 or N1), is required for the pyrrole synthesis. Computational results indicate that the hydride transfer is more likely to occur from C3 than N1. Additionally, we demonstrate the elasticity in the oxidase active site through enzymatic synthesis of proline derivatives.


Asunto(s)
Prolina/química , Prolina/metabolismo , Pirroles/química , Pirroles/metabolismo , Biocatálisis , Proteína Morfogenética Ósea 3/metabolismo , Proteínas Portadoras/metabolismo , Dominio Catalítico , Flavinas/química , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Conformación Proteica , Teoría Cuántica
19.
Nat Commun ; 13(1): 199, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017488

RESUMEN

Riboswitches are structured non-coding RNAs often located upstream of essential genes in bacterial messenger RNAs. Such RNAs regulate expression of downstream genes by recognizing a specific cellular effector. Although nearly 50 riboswitch classes are known, only a handful recognize multiple effectors. Here, we report the 2.60-Å resolution co-crystal structure of a class I type I preQ1-sensing riboswitch that reveals two effectors stacked atop one another in a single binding pocket. These effectors bind with positive cooperativity in vitro and both molecules are necessary for gene regulation in bacterial cells. Stacked effector recognition appears to be a hallmark of the largest subgroup of preQ1 riboswitches, including those from pathogens such as Neisseria gonorrhoeae. We postulate that binding to stacked effectors arose in the RNA World to closely position two substrates for RNA-mediated catalysis. These findings expand known effector recognition capabilities of riboswitches and have implications for antimicrobial development.


Asunto(s)
Neisseria gonorrhoeae/genética , Nucleósido Q/química , Pirimidinonas/química , Pirroles/química , ARN Bacteriano/química , ARN Mensajero/química , Riboswitch , Emparejamiento Base , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neisseria gonorrhoeae/metabolismo , Conformación de Ácido Nucleico , Nucleósido Q/biosíntesis , Pirimidinonas/metabolismo , Pirroles/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884931

RESUMEN

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirroles/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química , Azepinas/metabolismo , Azepinas/farmacología , Benzazepinas/metabolismo , Benzazepinas/farmacología , Sitios de Unión , Unión Competitiva , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogénica N-Myc/química , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Pirazoles/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacología , Pirroles/metabolismo , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...